Violando as hipóteses básicas

Celso J. Costa Junior

INTRODUÇÃO À ECONOMETRIA 19 de setembro de 2019

cjcostaj@yahoo.com.br

Sumário

- 1 Introdução
- 2 Violando a hipótese VI: a Multicolinearidade
- 3 Violando a hipótese V: a autocorrelação
- 4 Violando a hipótese IV: a heteroscedasticidade
- 5 Exemplos no R

Introdução

Hipóteses básicas sobre o modelo de regressão linear:

$$I E(\epsilon_t) = 0$$

- Il erros são normalmente distribuídos
- III X_t são fixos (não estocásticos)
- $V var(\epsilon_t) = \sigma^2$
- $V E(\epsilon_t \epsilon_i) = 0, t \neq i$
- VI cada variável independente X não pode ser combinação linear das demais.

Multicolinearidade é a (alta) correlação entre duas (ou mais) variáveis em um modelo de regressão múltipla.

Exemplos de Multicolinearidade:

$$X_1 = 2X_2$$

 $X_1 = X_2 + 3$
 $X_1 = 4X_2 - 5$

ou,

$$X_1 = 2X_2 + X_3 + 4$$

■ Problema da Multicolinearidade: Exemplo, se X₁ = 2X₂, qualquer variação da segunda implicará em variação proporcionalmente idêntica da primeira. É impossível distinguir qual é a influência de uma ou de outra para a variável dependente Y.

Exemplo 1.1: Suponha que o consumo é função da renda e da taxa real de juros. Se assumirmos ainda que esta relação é linear, teremos então que a especificação do modelo econométrico a ser estimado será dada por:

$$C_t = \beta_0 + \beta_1 Y_t + \beta_2 r_t + \mu_t$$

ano/trimestre	consumo	renda	taxa de juros real
	(US\$ bilhões)	(US\$ bilhões)	(% a.a.)
1990/1	72,2	105,6	12,00
1990/2	75,6	97,4	12,50
1990/3	89,6	112,0	11,00
1990/4	93,7	128,0	10,00
1991/1	92,2	120,2	10,50
1991/2	84,6	115,3	10,75
1991/3	90,8	105,4	11,25
1991/4	82,9	103,6	12,00
1992/1	65,8	102,7	12,25
1992/2	70,9	93,2	13,00
1992/3	63,1	98,3	12,50
1992/4	86,3	108,1	11,75
1993/1	87,2	115,8	11,50
1993/2	79,3	99,8	11,00
1993/3	87,4	110,5	10,50
1993/4	100,6	127,8	10,25

	coeficiente	desvio-padrão	estatística t
constante	111,487	66,840	1,667
renda	0,374	0,288	1,298
taxa de juros real	-6,097	3,314	1,840

estatística F = 17,645

Repare que o valor tabelado da estatística t considerando-se 10% de significância e 13 graus de liberdade é 1,771, ou seja, apenas o coeficiente da taxa de juros é significante; se considerarmos 5% (2,160 como valor tabelado), todos os coeficientes não são significantes.

Consequências da multicolinearidade

- os testes t podem resultar insignificantes, ainda que as variáveis sejam relevantes. Isto ocorre porque a variância dos coeficientes das variáveis explicativas aumenta quando ocorre multicolinearidade e daí o motivo dos testes t apresentarem baixa significância (ou mesmo não serem significantes).
- isto não significa que os testes t sejam inválidos.
- mesmo na presença de multicolinearidade, são mantidas as propriedades usuais do estimador de mínimos quadrados, isto é, continuam não viesados, eficientes e consistentes.

Como identificar a multicolinearidade?

- um teste F bastante significante acompanhado de estatísticas t para os coeficientes pouco significantes, ou até mesmo não significantes.
- o cálculo direto da correlação entre as variáveis também é uma forma de identificar a presença de multicolinearidade.
- O cálculo da correlação, no entanto, pode não funcionar muito bem quando temos mais do que duas variáveis no modelo.

O que fazer quando há multicolinearidade?

- A providência óbvia é retirar variáveis correlacionadas do modelo.
- Alterando o exemplo 1.1, $C_t = \beta_0 + \beta_1 Y_t + \mu_t$

	coeficiente	desvio-padrão	estatística t
constante	-7,859	17,405	0,452
renda	0,830	0,159	5,221

estatística F = 27,264

Neste caso, evidentemente, a multicolinearidade necessariamente foi eliminada pois sobrou apenas uma variável explicativa.

O que fazer quando há multicolinearidade?

- Muitas vezes é possível reduzir os efeitos da multicolinearidade através do aumento da amostra.
- Em alguns casos, seria possível reespecificar o modelo.
- Há ainda a alternativa de não se fazer nada.

- Autocorrelação significa a correlação de uma variável com valores defasados (com diferenças no tempo) dela mesmo.
- A hipótese V faz menção a autocorrelação dos erros.
- O erro não é uma variável especificamente, mas um conjunto de diversas influências que, pela sua própria natureza, são difíceis de serem medidas, mas não exercem influência uma sobre a outra.
- Mas, e se exercerem? E por que exerceriam? A omissão desta variável "joga" sua influência, sistemática, para o termo de erro.
- Outro tipo de erro que poderia levar a autocorrelação seria a má especificação funcional.
- Mas a autocorrelação pode ocorrer pela própria natureza do processo.

Um modelo de regressão em que a autocorrelação esteja presente:

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \epsilon_t$$

onde:

$$\epsilon_t = \rho \epsilon_{t-1} + \mu_t$$

Consequências da autocorrelação

- A hipótese de não existência de autocorrelação nos erros é um pré-requisito para a demonstração do Teorema de Gauss-Markov, como o qual se mostra que o estimador de mínimos quadrados de uma regressão linear é um MELNV.
- Entretanto, que a hipótese necessária para que o estimador seja não viesado e consistente (que é a de que os regressores, os "X", não sejam correlacionados com o erro) não é violada e, portanto, ainda que não tenha a menor variância, o estimador continua, em geral, não viesado e consistente.
- As exceções são os modelos que incluem, entre as variáveis dependentes (regressores), defasagens da variável independente, $Y_t = \beta_0 + \beta_1 X_t + \beta_2 Y_{t-1} + \epsilon_t$ e $\epsilon_t = \rho \epsilon_{t-1} + \mu_t$.

Como identificar a autocorrelação?

A maneira mais comum de identificar a existência de autocorrelação é através do teste de Durbin-Watson:

$$DW = \frac{\sum_{t=2}^{n} (\widehat{\epsilon}_t - \widehat{\epsilon}_{t-1})^2}{\sum_{t=2}^{n} \widehat{\epsilon}_t^2} \approx 2(1 - \widehat{\rho})$$

- $\rho \approx 0$ e $DW \approx 2$, não há autocorrelação.
- $\rho \approx 1$ e $DW \approx 0$, há autocorrelação positiva.
- ho pprox -1 e DW pprox 4, há autocorrelação negativa.
- Limitações do teste Durbin-Watson:
 - existe uma região em que o teste é inconclusivo.
 - a regressão não incluir o intercepto (termo constante).
 - a regressão incluir, como variáveis explicativas, defasagens da variável dependente.

- Mas quão distante de 2 deve estar o valor da estatística DW para que possamos concluir que existe, de fato, autocorrelação?
- Usando a tabela Durbin-Watson.
- Se, por exemplo, estivermos testando um modelo com duas variáveis explicativas, com 20 observações, para um nível de significância de 5%, encontramos os valores $d_i = 1, 10$ e $d_s = 1, 54$.
 - Se o valor de DW for abaixo de 1,10, rejeitamos a hipótese nula de não autocorrelação, isto é, concluímos que existe autocorrelação.
 - Se DW estiver entre 1,54 e 2, concluímos que não há autocorrelação (aceitamos a hipótese nula).
 - Se, entretanto, o valor de DW cair entre 1,10 e 1,54, o teste é inconclusivo, não dá para dizer se há ou não autocorrelação.

Exemplo 2.1: Na tabela abaixo encontramos dados de consumo e renda trimestrais de um país durante 5 anos. Estime a função consumo (consumo como função da renda) e teste a existência de autocorrelação, com 5% de significância.

ano/trimestre	consumo	renda	1998/1	676,7	944,4	
	(US\$ bilhões)	(US\$ bilhões)	1998/2	661,4	956,3	
1994/3	757,6	970,0	1998/3	686,8	971,7	
1994/4	745,2	988,5	1998/4	685,2	958,9	
1995/1	673,4	866,5	1999/1	684,9	961,9	
1995/2	652,2	812,4	1999/2	675,1	966,4	
1995/3	676,2	845,3	1999/3	663,1	977,5	
1995/4	709,1	891,9	1999/4	672,8	988,5	
1996/1	704,7	899,3	2000/1	675,2	1001,2	
1996/2	691,8	911,2	2000/2	693,1	996,7	
1996/3	696,6	903,2	2000/3	721,6	1005,6	
1996/4	667,6	904,5	2000/4	747,5	1011,2	
1997/1	667,2	906,7	2001/1	742,4	1004,2	
1997/2	671,0	920,2	2001/2	740,5	997,4	
1997/3	716,9	958,4	2001/3	741,5	1000,4	
1997/4	698.4	934.1	2001/4	722,6	1006,6	

	coeficiente	desvio-padrão	estatística t
constante	402,672	87,676	4,59
renda	0,311	0,092	3,37

estatística F = 11,32

- O coeficiente da renda foi significante (a 1%) e a regressão foi válida ("aprovada" pelo teste F, a 1%). Agora, convém testar a existência de autocorrelação.
- DW = 0,4454.
- Como o limite inferior da tabela de DW é, para 5% de significância, 30 observações e uma variável explicativa, d_i = 1,35, ou, para 1% de significância, 1,20 (em ambos os casos, maior do que 0,4454), concluímos que existe autocorrelação.

O que fazer quando há autocorrelação?

- Primeiro há a questão de qual é a causa da autocorrelação. Se o problema é de especificação, ele pode ser corrigido com a inclusão de mais variáveis ou com a alteração da forma funcional.
- Se não é este o caso, ou seja, a autocorrelação é uma "parte integrante" do modelo estimado:

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t$$

$$\epsilon_t = \rho \epsilon_{t-1} + \mu_t$$
(1)

Suponhamos ainda que o coeficiente ρ seja conhecido, pois $\widehat{\rho} \approx 1 - \frac{DW}{2}$,

$$\rho Y_{t-1} = \rho \beta_0 + \rho \beta_1 X_{t-1} + \rho \epsilon_{t-1} \tag{2}$$

Subtraindo (2) de (1):

$$Y_t - \rho Y_{t-1} = \beta_0 - \rho \beta_0 + \beta_1 X_t - \rho \beta_1 X_{t-1} + \epsilon_t - \rho \epsilon_{t-1}$$
 (3)

Sabendo que $\mu_t = \epsilon_t - \rho \epsilon_{t-1}$, e denominando, $Y_t^* = Y_t - \rho Y_{t-1}$, $\beta_0^* = \beta_0 - \rho \beta_0$ e $X_t^* = X_t - \rho X_{t-1}$. A equação (3) fica:

$$Y_t^* = \beta_0^* + \beta_1 X_t^* + \mu_t \tag{4}$$

Refazendo o exemplo 2.1, corrigindo o problema da autocorrelação, $\widehat{\rho}\approx 0,777,$

$$Y_t^* = Y_t - 0,777Y_{t-1}$$

$$X_t^* = X_t - 0,777X_{t-1}$$

	coeficiente	desvio-padrão	estatística t
constante	33,401	17,210	1,94
X^*	0,566	0,081	6,97

estatística
$$F = 48,52$$

$$DW = 1,3716$$

Se compararmos o valor encontrado (1,3716) com a tabela para 29 observações, veremos que, para 5% de significância, $d_i=1,34$ e $d_s=1,48$, o teste é inconclusivo. A 1% de significância, entretanto, os valores tabelados são $d_i=1,12$ e $d_s=1,25$, portanto aceitamos a hipótese de não existência de autocorrelação com esta significância.

A hipótese IV estabelece que a variância dos erros deve ser constante (o que é conhecido como homoscedasticidade).

Consequências da heteroscedasticidade:

A hipótese IV (assim como a hipótese V) é uma hipótese necessária para a demonstração do Teorema de Gauss-Markov. Desta forma, as conseqüências são basicamente as mesmas da presença da autocorrelação: os estimadores de mínimos quadrados ordinários continuam não viesados, mas já não são aqueles de menor variância. As variâncias dos estimadores são viesadas, invalidando assim os testes de hipóteses.

Como identificar a heteroscedasticidade?

O teste de Goldfeld e Quandt consiste em separar a regressão em duas, uma com valores menores de X e outra com valores maiores e aí fazer um teste para comparar a variância em cada regressão (um teste comum de comparação de variâncias, isto é, um teste F).

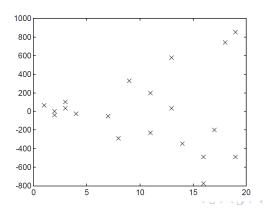
Exemplo 3.1: São dados na tabela abaixo os dados dos salários de 20 trabalhadores e os anos de estudo de cada um. Faça uma regressão dos salários em função dos anos de estudo e teste para a existência de heteroscedasticidade utilizando o teste de Goldfeld e Quandt.

1.	salários	8	1497,50
anos de	1	0	
estudo	(R\$)	9	2317,70
1	410,00	11	2169,50
2	508,90	11	2596,80
3	857,70	13	2844,60
2	551,30	13	3391,00
3	789,20	14	2671,20
4	935,50	16	2653,80
7	1529,30	16	2939,10

17	3437,00
18	4583,30
19	3559,30
19	4896,70

	coeficiente	desvio-padrão	estatística t
constante	139,074	184,155	0,755
anos de estudo	205,621	15,400	13,35

F = 178,28



Para testarmos a heteroscedasticidade, dividiremos os dados em dois grupos como manda o teste de Goldfeld e Quandt. Esta divisão é arbitrária, mas o teste tende a ser mais eficiente se dividir os dados ao "meio".

$$\frac{\textit{var}_{II}}{\textit{var}_{I}} = \frac{345890,73}{3673,60} = 94,16$$

Como o valor limite na tabela F, com 5% de significância, para 5 graus de liberdade no numerador e 4 graus de liberdade no denominador é 6,26, rejeitamos a hipótese de que as variâncias sejam iguais (vale a hipótese de que a variância da segunda regressão é maior) e, portanto, rejeitamos a hipótese nula de homoscedasticidade.

Como identificar a heteroscedasticidade?

Outro teste que pode ser usado para detecção do problema de heteroscedasticidade é o teste de White que consiste em, a partir de um modelo de regressão qualquer:

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \epsilon_t$$

É feita uma regressão auxiliar onde a variável dependente é o resíduo ao quadrado e os regressores são os próprios regressores da regressão original, seus quadrados e os produtos cruzados, desta forma:

$$\hat{\epsilon}_t^2 = \gamma_0 + \gamma_1 X_{1,t} + \gamma_2 X_{2,t} + \gamma_3 X_{1,t}^2 + \gamma_4 X_{2,t}^2 + \gamma_5 X_{1,t} X_{2,t} + \mu_t$$

Um R^2 elevado nesta regressão auxiliar é um indício de que há heteroscedasticidade. Pode-se demonstrar que nR^2 segue uma distribuição de χ^2 com o número de graus de liberdade igual ao número de regressores da regressão auxiliar (menos o intercepto).

O que fazer quando há heteroscedasticidade?

Havendo heteroscedasticidade, o procedimento de "correção" é mais simples se soubermos (ou pelo menos, suspeitarmos) qual é o padrão da heteroscedasticidade.

Tomemos um modelo de regressão abaixo e suponhamos que exista heteroscedasticidade.

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \epsilon_t$$

Digamos que seja conhecido que a variância dos erros é dada por: $var(\epsilon_t) = \sigma_t^2 = Z_t \sigma^2$.

Dividindo a equação anterior por $\sqrt{Z_t}$:

$$\frac{Y_t}{\sqrt{Z_t}} = \beta_0 \frac{1}{\sqrt{Z_t}} + \beta_1 \frac{X_{1,t}}{\sqrt{Z_t}} + \beta_2 \frac{X_{2,t}}{\sqrt{Z_t}} + \frac{\epsilon_t}{\sqrt{Z_t}}$$

Assim,

$$var\left(rac{\epsilon_t}{\sqrt{Z_t}}
ight) = rac{1}{Z_t}var(\epsilon_t) = rac{1}{Z_t}Z_t\sigma^2 = \sigma^2 = var(\mu_t)$$

Então,

$$\frac{Y_t}{\sqrt{Z_t}} = \beta_0 \frac{1}{\sqrt{Z_t}} + \beta_1 \frac{X_{1,t}}{\sqrt{Z_t}} + \beta_2 \frac{X_{2,t}}{\sqrt{Z_t}} + \mu_t$$

Obs: Muitas vezes funciona assumir $Z_t = dp(\epsilon_t)$.

Corrigindo o problema da heteroscedasticidade do exemplo 3.1:

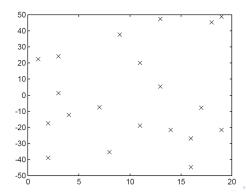
$$Y_t = \beta_1 + \beta_2 X_t + \epsilon_t$$

$$\frac{Y_t}{X_t} = \beta_1 \frac{1}{X_t} + \beta_2 \frac{X_t}{X_t} + \frac{\epsilon_t}{X_t}$$

$$\frac{Y_t}{X_t} = \beta_1 \frac{1}{X_t} + \beta_2 + \mu_t$$

	coeficiente	desvio-padrão	estatística t
$\hat{\beta}_2$	198,869	9,126	21,79
$\hat{\beta}_1$	188,745	29,716	6,35

F = 40,34



Exemplos no R

Exemplo 1.1:

```
base1 <- ts(read.csv2('Exemplo1_1.csv', header=T, sep=';',
    dec=',')[,2:4], start=c(1990,01), freq=4)

reg1<- lm(base1[,1]~1+base1[,2]+base1[,3])
print(summary(reg1))
reg2<- lm(base1[,1]~1+base1[,2])
print(summary(reg2))</pre>
```

Exemplos no R (cont.)

Exemplo 2.1:

```
library(lmtest)
library(xts)
base2 <- ts(read.csv2('Exemplo2_1.csv', header=T, sep=';',</pre>
 dec=',')[,2:3], start=c(1994,03), freq=4)
reg3<- lm(base2[,1]\sim1+base2[,2])
print(summary(reg3))
DW<-dwtest(req3)
rho<-1-0.4454081/2
print(rho)
base2_star <- (base2 - rho*lag.xts(base2, k = 1))</pre>
reg4 <- lm(base2\_star[,1] \sim 1 + base2\_star[,2])
print(summary(req4))
dwtest(reg4)
```

Exemplos no R (cont.)

Exemplo 3.1:

```
library(lmtest)
base3 <- read.csv2('Exemplo3_1.csv', header=T, sep=';',dec=',')</pre>
reg5<- lm(base3[,2]~1+base3[,1])
print(summary(req5))
bptest(req5)
bptest(req5,~ fitted(req5) + I(fitted(req5)^2))
Y_X<-base3[,2]/base3[,1]
X_1<-1/base3[,1]
reg6 < - lm(Y_X \sim 1 + X_1)
print(summary(reg6))
bptest(reg6)
bptest(reg6,~ fitted(reg6) + I(fitted(reg6)^2))
```

END